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Abstract: Oscillatory processes in nonlinear multiphase electro ferromagnetic circuits (EFMC) have an exceptional 

variety and complexity, and therefore their research is also associated with solving complex physical 

problems. Theoretical analysis, in order to identify the main patterns of excitation of subharmonic 

oscillations of various orders, and the development of engineering calculation methods are of particular 

importance in designing and creating various switching-type converter devices. On the other hand, two-

phase self-oscillating circuits are physical models of power transmission lines (power lines). Consequently, 

the study of the excitation of the existence of subharmonic oscillations in two-phase systems allows us to 

establish some patterns of overvoltage with power lines with capacitive compensation caused by harmonic 

oscillations, and, if possible, take measures to prevent these abnormal modes or mitigate their negative 

consequences. This article discusses the process of excitation of subharmonic oscillations ω/2 in two-phase 

EFMC. Using the method of energy relations, the areas of existence and critical values of the circuit 

parameters are determined  

1 INTRODUCTION 

It is known that self-oscillations can occur in circuits 

with electro-ferromagnetic oscillatory circuits. These 

fluctuations are caused by periodic changes in the 

nonlinear inductance. Since the change in the 

nonlinear inductance occurs under the influence of 

the power supply, the circuit is called auto-

parametric [1-7]. 

In general, auto-parametric oscillations (APO) 

can be excited in circuits with a nonlinear resistor, 

inductance, and capacitance due to the ability of 

circuits to accumulate a certain amount of energy in 

their elements, which is necessary to excite and 

maintain the APC at a particular frequency [8-15]. 

However, the most interesting from a practical point 

of view are auto-parametric (AP) circuits with an 

electro ferromagnetic oscillatory circuit capable of 

developing high power during energy conversion. 

Ferromagnetic elements in combination with linear 

capacitances can form circuits in which a significant 

amount of stored energy during the excitation of the 

APO can be effectively used to create devices and 

devices of converter technology.  

Of particular interest in this regard are the issues 

of the development of the theory and methods of 

calculating auto-parametric (AP) energy converters, 

which could be the basis for engineering calculations 

of specific devices.  

Of even greater practical interest is the creation 

of devices based on multiphase AP circuits with an 

electro ferromagnetic oscillatory circuit (in 

particular, two-phase and three-phase). Unlike 

existing energy converters, these devices are made 

mainly on the basis of single-phase nonlinear 

circuits, have phase-specific features, and are 

reliable and easy to operate.  

2 METHODS AND MATERIALS 

Consider the analysis of the two–phase frequency 

divider in Figure 1, which is two identical 

ferroresonance circuits consisting of counter-

coupled nonlinear inductors of series-connected 

capacitors. The secondary windings of nonlinear 

inductors are connected in series and shunted by a 
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diode to create a constant magnetic field necessary 

to obtain even harmonics.  

When the device is connected to the power 

source of the generating voltage U1 and U2 and at 

certain ratios between the input voltages and circuit 

parameters, auto-parametric oscillations are excited 

in them at the frequency of the second-order 

subharmonics. At the same time, the phases of 

excited oscillations are shifted by 1800 (Figure 1 b), 

since the magnetic fluxes created by the currents of 

the primary and secondary windings of nonlinear 

inductances are added in one core, while in the other 

core they are subtracted due to the specified 

connection of the secondary windings.  

Shunting of secondary windings by diode D 

provides self-magnetization of cores by rectified 

current. 
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Figure 1: Two-phase frequency divider in two times: 

a) schematic diagram of the frequency divider; b) voltage

waveforms in the tank.

Thus, the device allows for self-excitation of the 

APO at the second-order subharmonic frequency 

due to parametric changes in the inductance of a 

nonlinear reactive element. 

3 RESULTS AND DISCUSSION 

Subharmonic oscillations can be excited in the 

system, the amplitudes of which are equal but differ 

in phase by 1800 (Figure 1 b) [16]. 

Depending on this, there are two modes of 

excitation of the SGC: 

Ψam=Ψbm 00 and 1800 

Ψam=Ψbm 1800 and 00 

To analyze the steady-state regime of changes in 

magnetic fluxes in ferromagnetic elements (FE), we 

take as: 

Ψa = Ψ0a+Ψ1mcos(ωt+𝜑1)+Ψ2mcos(ωt+ 𝜑2) 

Ψb = Ψ0b+Ψ1mcos(ωt+ 𝜑1-1800)+ 

Ψ2mcos(ωt+ 𝜑2-1800)=Ψb-Ψ1mcos(ωt+ 𝜑1)-

Ψ2mcos(ωt+ 𝜑2)      

The magnetization characteristic of nonlinear 

elements is also approximated by an incomplete 

polynomial of the third degree: 

 ia= aΨa+bΨa
3 ,      ib=aΨb+bΨb

3 .        (2) 

Substituting (1) into (2) and neglecting terms 

other than the frequencies ω and 2ω, we obtain 

expressions for currents (3):  

ia=A0a+A1acos(ωt+ 𝜑1)+A2asin(ωt+ 𝜑1)+ 

B1acos(2ωt+ 𝜑2)+B2asin(2ωt+ 𝜑2) 

ib=A0b+A1bcos(ωt+ 𝜑1)+A2bsin(ωt+ 𝜑1)+ 

B1bcos(2ωt+ 𝜑2)+B2bsin(2ωt+ 𝜑2) ,   

where: 

A0a=aΨ0+bΨ0
3+

3𝑏

2
Ψ0Ψ1

2+
3𝑏

2
Ψ0Ψ1

2- -
3𝑏

4
Ψ1

2Ψ2cos (2 𝜑1- 𝜑2) 

A1a=aΨ1+
3𝑏

4
Ψ1

3+3bΨ0
2Ψ1-

3𝑏

2
Ψ1Ψ2

2+3bΨ0Ψ1Ψ2cos (2 𝜑1- 𝜑2) 

A2a=3bΨ0Ψ1Ψ2sin (2 𝜑1- 𝜑2) 

B1a=aΨ2+
3𝑏

4
Ψ2

3+3bΨ0
2 Ψ2+

3𝑏

2
Ψ1

2 Ψ2+
3𝑏

2
 Ψ0 

Ψ1
2cos (2𝜑1- 𝜑2) 

B2a= −[
3𝑏

2
 Ψ0 Ψ1

2sin (2 𝜑1- 𝜑2)] 

A0b=aΨ0+bΨ0
3+ 

3𝑏

2
Ψ0Ψ1

2+
3𝑏

2
Ψ0Ψ2

2- -
3𝑏

4
Ψ1

2Ψ2cos (2 𝜑1- 𝜑2) 

A1b= - [aΨ1+ 
3𝑏

4
Ψ1

3+
3𝑏

2
Ψ0

2Ψ1+ 
3𝑏

2
Ψ1Ψ2

2- 

3bΨ0Ψ1Ψ2cos (2 𝜑1- 𝜑2)] 

A2b=3bΨ0Ψ1Ψ2sin (2 𝜑1- 𝜑2) 

B1b= - [aΨ2+
3𝐵

4
Ψ2

3+3bΨ0
2 Ψ2+

3𝐵

2
Ψ1

2 Ψ2+
3𝐵

2

Ψ0 Ψ1
2cos (2 𝜑1- 𝜑2)] 

B2b = - [ 
3𝑏

2
 Ψ0 Ψ1

2 sin (2 𝜑1- 𝜑2)]. 

D 

(1) 

(3)
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The voltage on nonlinear inductors (4) 

ua= 
𝑑𝛹𝑎

𝑑𝑡
 = - ωΨ1msin(ωt+ 𝜑1)-2ωΨ2msin(2ωt+ 𝜑2)  

ub=
𝑑𝛹𝑏

𝑑𝑡
 = ωΨ1msin(ωt+ 𝜑1)  +2ωΨ2msin(2ω+ 𝜑2) . 

Let 's express currents and voltage in a complex 

form (5):  

İa1m=(jA1a+A2a) 𝑒𝑗𝜑1

İa2=(jB1a+B2a) 𝑒𝑗𝜑2

İb1=(jA1b+A2b) 𝑒𝑗𝜑1

İb2=(jB1b+B2b) 𝑒𝑗𝜑2

Ua1=-ωΨ1m 𝑒𝑗𝜑1

Ua2=-2ωΨ2m𝑒𝑗𝜑2

Ub1= ωΨ1m 𝑒𝑗𝜑1

Ub2= 2ωΨ2m𝑒𝑗𝜑2.

Then the complexes of full capacities are 

expressed accordingly (6): 

Ŝa1=
1

2
Ùa1·İa1 

Ŝa2=
1

2
Ùa2·İa2 

Ŝb1=
1

2
Ùb1·İb1

Ŝb2=
1

2
Ùb2·İb2 

or power for subharmonics (7): 

Ŝa1=
1

2
(-ωΨ1mejϕ1) ·(A1a+jA1a) e jϕ1 

Ŝb1=(ωΨ1mejϕ1) ·(A2b+jA2b) e-jϕ1 

or (8) 

Pa1= - 
3𝑏

2
ω∙Ψ0Ψ1

2Ψ2sin (2 𝜑1- 𝜑2) 

Qa1=
 𝜔

2
(aΨ1

2+
3𝑏

4
Ψ1

4+3bΨ0
2Ψ1

2+ 
3𝑏

2
Ψ1

2Ψ2
2+3bΨ0Ψ1

2Ψ2cos (2 𝜑1- 𝜑2) 

Pb1=
1

2
ωΨ1m 3bΨ0Ψ1

2Ψ2sin (2 𝜑 1-𝜑2) 

Qb2= - 
𝜔

2
[aΨ1

2+
3𝑏

4
Ψ1

4+3bΨ0
2Ψ1

2+ 
3𝑏

2
Ψ1

2Ψ2
2-3bΨ0Ψ1

2Ψ2cos (2 𝜑1- 𝜑2)] 

Pa2= 
1

2
ωΨ1m

2∙3bω∙Ψ0Ψ2sin (2𝜑1- 𝜑2) 

Pb2=-
𝜔

2
Ψ1m

23bΨ0Ψ2sin(2𝜑2- 𝜑1). 

According to ∑ 𝑃𝑘(𝑡) = 0 2
𝑘=1  for two-phase

EFMC, the necessary condition for converting the 

energy of the frequency 2ω into the energy of the 

frequency ω will be (9): 

[l , 2, 3]

Pa1=-Pa2

Pb1=-Pb2

or      

0°<2 𝜑1a- 𝜑2a<180°, 

180°<2 𝜑1b- 𝜑2b<360°. 

By entering the notation (10): 

α = bΨ0Ψ2sin (2 𝜑1- 𝜑2); 

β = a + 
3𝑏

4
 + 3bΨ0

2 + 3bΨ2
2 ;

γ = 2 𝜑1- 𝜑2 

KP1=
2𝑃

𝜔𝛹₁²
=-α·sinγ 

Kq1 = 
2𝑄

𝜔𝛹₁²
 = β+α·cos γ 

Kp2 = α·sin γ 

Kq2 = - β – α · cos γ. 

Squaring and adding them, and using simple pre-

formations, we obtain second-order equations with 

respect to the squares of the amplitudes of the 

magnetic fluxes Ψ1m2 and Ψ2m2, where Ψ1m2 is the 

magnetic flux of the subharmonics (ω/2) and Ψ2m2 

is the component of the magnetic flux of the 

fundamental harmonic (ω): 

4Ψ2
4+Ψ1

4+16Ψ0
4+4Ψ2

2Ψ1
2+ 

8Ψ1
2Ψ0-

16

3𝑏
(Kq-a)Ψ2

2-
8

3𝑏
(Kq-a)Ψ1

2-
32

𝑏
(Kq-a)Ψ0

2+
16

9𝑏2[KP
2+(Kq-a)2]=0, 

where  KP=
𝜔𝑅

𝑧²
 ; Kq= 

1

𝜔𝑐𝑧²
. 

Since in the scheme under consideration 

Figure 1a subharmonic oscillations has phase shifts 

 𝜑 = 1800 with symmetric amplitude, then further 

analysis of (11) is sufficient to study the process of 

excitation of SGC in one phase. 

To determine the quantitative ratios of the 

subharmonic oscillations mode in (11), the square of 

the flow of the magnetizing effect, (Ψ0
2) which is the 

control parameter of the frequency division mode, is 

considered to be set. In this case, (11) will take the 

form and will also represent a second-order 

curve: 

4Ψ2m
4 + Ψ1m

2 + 4Ψ2m
2Ψ1m

2 - 
16

3𝑏
 (kq - a - 3bΨ0

2) 

Ψ2m
2 - 

8

3𝑏
 (kq - a) Ψ2m

2 + 
16

9𝑏²
 (kq - a - 3bΨ0

2) [(Kı)2+1] = 0 

where: Kı=
𝐾𝑝

𝐾𝑞−𝑎−3𝑏𝛹₀²
. 

Invariants that are equal to (13) 

 𝛿 = |
4 2
2 1

| S = 4+1 = 5 > 0 

∆= - 
64

3𝑏
 [(

𝐾𝑝

𝐾𝑞−𝑎−3𝑏Ψ0
)2 + 1] · Ψ0

2    

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(11) 

(10) 

(12) 

(13)
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Since Ψ2m
2 and Ψ1m

2 are the squares of the 

amplitudes of the main and subharmonic 

components of the flow couplings, for the existence 

of the subharmonic oscillations in the system, it is 

necessary that the curve describing the mode in 

question (Figure 2) be located on the first quadrant 

of the plane Ψ2m
20Ψ1m

2.This is possible only under 

the condition that [19-21] (14). 

Ψ0
2 > 0, (14) 

that is, with a positive magnitude of the magnetizing 

effect on the ferromagnetic element. 

Figure 2: Graphical representation of (12). 
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Figure 3: Graphical solution of (12). 

If conditions (14) are met, (12) describes real 

parabolas in the plane Ψ2m
20Ψ1m

2, the coordinates of 

the vertices of which are determined from the 

expressions (15) 

Ψ20
2 = 

4

3𝑏
(Kq - a);  Ψ10

2 = 
2

3𝑏
 (Kq - a).     (15) 

The angle of rotation of the axes of the parabola 

relative to the coordinate axes is equal to     

α = arctg ( 
−4

2
) ≈ -63o30ı. 

The parameter of the parabola is determined from 

the expression (16) 

P = 
−24(𝐾𝑞−𝑎)[−1−3𝑏𝛹₀²]

3а ·𝑏 · √5  
 .       (16) 

From where it can be seen that it is proportional 

to the magnetizing effect. The construction of the 

dependence according to (12) is shown in Figure 3. 

For the existence of the SGC, it is necessary that 

the coordinates of the vertices are in the first 

quadrant of the plane Ψ2m
20Ψ1m

2. 

Therefore, the conditions for the existence of 

SGC are inequalities (17): 

Ψ20
2 > 0    Ψ10

2 > 0 .  (17) 

Since Ψ0
2 > 0 and Ψ20

2 > 0, then from (17) the 

necessary condition for the existence of the SGC 

will be Ψ10
2 > 0. Taking into account (15) and (16), 

(12) acquires the canonical form of writing in the

new coordinate system (Ψ2m
2) and (Ψ1m

2) (18)

(Ψ1m
2)’ = P(Ψ2m

2).       (18) 

Since the second-order subharmonic oscillations 

are excited at positive values of the input effect from 

(11), it is possible to determine the region of 

existence by the input effect. Equating Ψ1m2=0 we 

have (19) and (20): 

4Ψ2m
4 – MΨ2m

2 + Ғ = 0,      (19) 

here    M = 
16

3𝑏
 (Kq – a).

G  = 
16

9
(

𝐾𝑞−𝑎−3𝑏Ψ₀²

𝑏
)2 [ (Kı)2 + 1)],      (20) 

then (21)     Ψ2
2 = 

− √𝑀²−16𝐹

4
 (21) 

or (22) 

∆Ψ2
2=-√

256

9𝑏²
(𝐾𝑞 − 𝑎)² −  

64

9𝑏²
 (𝐾𝑞 − 𝑎 − 3𝑏𝛹₀²)² (𝐾)²  . (22) 

The critical value of the parameters of the soft 

excitation circuit of the subharmonic oscillations can 

be determined from the condition ∆Ψ2
2 = 0, 

while (23) 

4(Kq-a)2 – (Kq - a – 3bΨ0
2)2 ( Kı )2 .    (23) 

It is important to determine in the region of the 

existence of a second-order subharmonic oscillations 

bounded by an ellipse according to (12), the region 

of soft and hard excitation, i.e. determining the limit 

of variation of the magnetizing effect leading to soft 

excitation of a soft oscillation.  

The condition for soft excitation will be the 

positivity of the derivative а(Ψ1m
2) / a(Ψ2m

2) at the 

intersection point of the left branch of the parabola 

with the axis of the abscissa. The intersection point 
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is determined from (12). To do this, we will solve 

these equations with respect to the input effect 

(Ψ2m
2) = 

16

3𝑏
 ( Kq - a) ± 

±√
16

3𝑏
(𝐾𝑞 −  𝑎) − 16  [ 

16

9𝑏2
 (𝐾𝑞 −  𝑎 –  3𝑏𝛹02)[(𝐾|)2 +  1]  . 

Solving the inequality dΨ1m
2 / dΨ2m

2 ≥ 0  (Ψ2m
2)1 

at the point 0 determined from (24), we obtain an 

expression for the magnetizing effect in the plane 

Kp0 Ψ0
2, in which a soft excitation mode is possible: 

4Ψ0
4 - 

32

3𝑏
(Kq - a) Ψ0

2 + 
64

9𝑏²
 (Kq - a)2 

[
𝐾𝑝²

(𝐾𝑞−𝑎)²
+ 1] ≥ 0 .

Expressions (25), when the right side is equal to 

zero, describes real ellipses in the Kp0Ψ0
2 plane. 

Coordinates of ellipse centers (26) 

Kp = 0,  Ψ0
2 = 

4

3𝑏
 (Kq – a).  (26) 

Values of the semi-axes (27): 

aKq = 
16

3𝑏
(Kq - a),     b(Ψ0²) = 

8

3𝑏
 (Kq - a).     (27) 

To determine the boundary of the soft excitation, 

we solve (25) with respect to Ψ0
2, as a result we 

obtain (28): 

(Ψ0
2)12 ≥ 

8

3𝑏
 (Kq - a) ± 

± √
64

9𝑏2
 (𝐾𝑞 − 𝑎)2 −

16

9𝑏²
(𝐾𝑞 − 𝑎)2  −  [(𝐾1)2 +  1 

From here it can be seen that the area of “soft” 

excitation is limited: from below and from above by 

the values (Ψ0
2). The graph of the separation of the 

areas of “soft” and “hard” excitation is shown in 

Figure 4. 

Figure 4: Separation of the areas of “soft” and “hard” 

excitation is shown. 

4 CONCLUSION 

The paper has accomplished the following: 

1) Using frequency–energy relations, an equation

is obtained that characterizes the steady-state

mode of existence of the second-order SGC.

2) The results of the analysis of the obtained

equations show that the second-order

subharmonic oscillations are excited “gently”

at certain ratios of the circuit parameters, input

voltage and magnetization current.

3) The dependence Kp = f(Kq) is obtained,

characterizing the value of the converted power

by a reactive nonlinear element to the

frequency of the subharmonic oscillations from

the power consumption. The analysis of the

dependence Kp = f (Kq) also makes it possible

to determine the critical values of the circuit

parameters characterizing the region of

existence of the subharmonic oscillations of a

particular frequency close to the engineering

calculation method.
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